如图(a),两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.
(1)将图(a)中的△OAB绕点O顺时针旋转90°角,在图(b)中作出旋转后的△OAB(保留作图痕迹,不写作法,不证明);
(2)在图(a)中,你发现线段AC,BD的数量关系是______,直线AC,BD相交成______度角;
(3)将图(a)中的△OAB绕点O顺时针旋转一个锐角,得到图(c),这时(2)中的两个结论是否成立?作出判断并说明理由.若△OAB绕点O继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.
网友回答
解:(1)如图(a)【A,B字母位置互换扣,无弧扣,不连接AB扣,扣完为止)】
(2)AC=BD;90(90°)(每空1分)
(3)成立.如图(b).
∵∠COD=∠AOB=90°,
∴∠COA+∠AOD=∠AOD+∠DOB,
即:∠COA=∠DOB(或由旋转得∠COA=∠DOB),
∵CO=OD,OA=OB,
∴△COA≌△DOB,
∴AC=BD,
延长CA交OD于E,交BD于F,(下面的证法较多)
∵△COA≌△DOB,
∴∠ACO=∠ODB,
∵∠CEO=∠DEF,
∴∠COE=∠EFD=90°,
∴AC⊥BD.
旋转更大角时,结论仍然成立.
解析分析:(1)△OAB绕点O顺时针旋转90°角应该在△COD的右边;
(2)的结论容易得到,AC=BD,AC与BD相交成90°的角;
(3)结论仍然成立,利用等腰直角三角形的性质可以得到全等条件证明△COA≌△DOB,然后利用全等三角形的性质可以证明结论仍然成立.
点评:本题考查了图形的旋转变化,学生要看清是顺时针还是逆时针旋转,然后画出图形,利用图形的性质通过证明三角形全等就可以解决问题.