如图,在△ABC中,AB=AC,AD是底边BC上的中线,BC=12cm,AD=8cm,E为AC中点,则求DE的长度等于多少cm.
网友回答
解:∵AB=AC,AD是底边BC上的中线,
∴AD⊥BC,CD=BC=×12=6cm,
由勾股定理得,AC===10cm,
∵E为AC中点,
∴DE=AC=×10=5cm.
解析分析:根据等腰三角形三线合一的性质可得AD⊥BC,CD=BC,再利用勾股定理列式求出AC,然后根据直角三角形斜边上的中线等于斜边的一半可得到DE=AC.
点评:本题考查了等腰三角形三线合一的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.