如图,在矩形ABCD中,AB=10,BC=8,E为AD边上的一点,沿CE将△CDE对折,点D正好落在AB边上的点F处,则cos∠CEF=________.

发布时间:2020-08-05 01:10:29

如图,在矩形ABCD中,AB=10,BC=8,E为AD边上的一点,沿CE将△CDE对折,点D正好落在AB边上的点F处,则cos∠CEF=________.

网友回答



解析分析:根据矩形的性质得DC=AB=10,AD=BC=8,∠A=∠B=90°,再根据折叠的性质得CF=CD=10,∠CEF=∠DEC,ED=EF;在Rt△BFC中利用勾股定理计算出BF=6,
则AF=4,设DE=x,则AE=8-x,EF=x,然后在Rt△AEF中利用勾股定理得到关于x的方程,解方程得到x的值,接着再利用勾股定理计算出CE,再根据余弦的定义求解.

解答:∵四边形ABCD为矩形,
∴DC=AB=10,AD=BC=8,∠A=∠B=90°,
∵沿CE将△CDE对折,点D正好落在AB边上的点F处,
∴CF=CD=10,∠CEF=∠DEC,ED=EF,
在Rt△BFC中,BC=8,CF=10,
∴BF==6,
∴AF=AB-BF=4,
设DE=x,则AE=8-x,EF=x,
在Rt△AEF中,AE2+AF2=EF2,即(8-x)2+42=x2,解得x=5,
在Rt△DEC中,DE=5,DC=10,
∴EC==5,
∴cos∠DEC===,
即cos∠CEF===.
以上问题属网友观点,不代表本站立场,仅供参考!