如图,?ABCD内有一点E,满足ED⊥AD于D,∠EBC=∠EDC,∠ECB=45°,请找出与BE相等的一条线段,并予以证明.

发布时间:2020-08-07 16:54:26

如图,?ABCD内有一点E,满足ED⊥AD于D,∠EBC=∠EDC,∠ECB=45°,请找出与BE相等的一条线段,并予以证明.

网友回答

解:CD=BE.
证明:如图,延长DE,交BC于F,
∵AD∥BC,ED⊥AD,
∴DF⊥BC,
∴∠BFE=∠DFC=90°,
又∵∠ECB=45°,
∴∠FEC=∠ECB=45°,
∴FE=FC,
∵∠EBC=∠EDC,
∴△BEF≌△DCF(AAS),
∴CD=BE.
解析分析:延长DE,交BC于F,由平行四边形的性质可得到∠BFE=∠DFC=90°,由已知可推EF=FC,已知∠EBC=∠EDC,则可以利用AAS来判定△BEF≌△DCF,从而得到CD=BE.

点评:此题主要考查学生对平行四边形所性质及全等三角形的判定方法的理解及运用.
以上问题属网友观点,不代表本站立场,仅供参考!