如图,正方形ABCD,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP为最短.求:最短距离EP+BP.

发布时间:2020-08-06 10:31:58

如图,正方形ABCD,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP为最短.求:最短距离EP+BP.

网友回答

解:由正方形的对角线互相垂直平分,可得无论P在什么位置,都有PD=PB;
故均有EP+BP=PE+PD成立;
连接DE与AC,所得的交点,即为EP+BP的最小值时的位置,
此时EP+BP=DE==5.
解析分析:根据正方形沿对角线的对称性,可得无论P在什么位置,都有PD=PB;故均有EP+BP=PE+PD成立;所以原题可以转化为求PE+PD的最小值问题,分析易得连接DE与AC,求得交点就是要求的点的位置;进而可得EP+BP=DE==5,可得
以上问题属网友观点,不代表本站立场,仅供参考!