已知函数,且是函数y=f(x)的极值点.(I)求实数a的值,并确定实数m的取值范围,使得函数?(x)=f(x)-m有两个零点;(II)是否存在这样的直线l,同时满足:

发布时间:2020-08-07 14:19:25

已知函数,且是函数y=f(x)的极值点.
(I)求实数a的值,并确定实数m的取值范围,使得函数?(x)=f(x)-m有两个零点;
(II)是否存在这样的直线l,同时满足:①l是函数y=f(x)的图象在点(2,f(2))处的切线;  ②l与函数y=g(x)的图象相切于点P(x0,y0),x0∈[e-1,e],如果存在,求实数b的取值范围;不存在,请说明理由.

网友回答

解:(I)x>0时,f(x)=(x2-2ax)ex,∴f'(x)=(2x-2a)ex+(x2-2ax)ex=[x2+2(1-a)x-2a]ex,
由已知,∴,∴
得a=1,所以x>0时,f(x)=(x2-2x)ex,∴f'(x)=(2x-2)ex+(x2-2x)ex=(x2-2)ex.
令f'(x)=0得舍去).

当x>0时,
当时,f(x)单调递减,
当f(x)单调递增,∴x>0时,
要使函数?(x)=f(x)-m有两个零点,即方程f(x)-m=0有两不相等的实数根,也即函数y=f(x)的图象与直线y=m有两个不同的交点.
(1)当b>0时,m=0或;
(2)当b=0时,;
(3)当b<0时,.
(II)假设存在,x>0时,f(x)=(x2-2x)ex,f'(x)=(x2-2)ex,∴f(2)=0,f'(2)=2e2.
函数f(x)的图象在点(2,f(2))处的切线l的方程为:y=2e2(x-2),
因直线l与函数g(x)的图象相切于点P(x0,y0),x0∈[e-1,e],∴y0=clnx0+b.,
所以切线l的斜率为,
所以切线l的方程为:即l的方程为:,
得.
得b=2e2(x0-x0lnx0-2)其中x0∈[e-1,e]
记h(x0)=2e2(x0-x0lnx0-2)其中x0∈[e-1,e],h'(x0)=-2e2lnx0,
令h'(x0)=0,得x0=1.

又h(e)=-4e2,h(e-1)=4e-4e2>-4e2.∵x0∈[e-1,e],∴h(x0)∈[-4e2,-2e2],
所以实数b的取值范围为:b|-4e2≤b≤-2e2.
解析分析:(Ⅰ)先求出其导函数,利用x=是函数y=f(x)的极值点对应,求出a的值,进而求出函数f(x)的单调性;函数y=f(x)-m有两个零点,转化为函数y=f(x)的图象与直线y=m有两个不同的交点,利用导函数求出函数y=f(x)的单调区间,画出草图,结合图象即可求出实数m的取值范围.
(II)利用导函数分别求出两个函数的切线方程,利用方程相等,对应项系数相等即可求出关于实数b的等式,再借助于其导函数即可求出实数b的取值范围.(注意范围限制).


点评:本题第一问主要研究利用导数研究函数的单调性.利用导数研究函数的单调性时,一般结论是:导数大于0对应区间为原函数的递增区间;导数小于0对应区间为原函数的递减区间.
以上问题属网友观点,不代表本站立场,仅供参考!