如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C.
(1)当A,B移动后,∠BAO=45°时,则∠C=______;
(2)当A,B移动后,∠BAO=60°时,则∠C=______;
(3)由(1)、(2)猜想∠C是否随A,B的移动而发生变化?并说明理由.
网友回答
解:(1)根据三角形的外角性质,∠ABN=∠AOB+∠BAO=90°+45°=135°,
∵BE平分∠NBA,AC平分∠BAO,
∴∠ABE=∠ABN=67.5°,∠BAC=∠BAO=22.5°,
∴∠C=∠ABE-∠BAC=67.5°-22.5°=45°;
(2)根据三角形的外角性质,∠ABN=∠AOB+∠BAO=90°+60°=150°,
∵BE平分∠NBA,AC平分∠BAO,
∴∠ABE=∠ABN=75°,∠BAC=∠BAO=30°,
∴∠C=∠ABE-∠BAC=75°-30°=45°;
(3)∠C不会随A、B的移动而发生变化.
理由如下:根据三角形的外角性质,∠ABN=∠AOB+∠BAO,
∵BE平分∠NBA,AC平分∠BAO,
∴∠ABE=∠ABN,∠BAC=∠BAO,
∴∠C=∠ABE-∠BAC=(∠AOB+∠BAO)-∠BAO=∠AOB,
∵∠MON=90°,
∴∠AOB=∠MON=90°,
∴∠C=45°.
解析分析:(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ABN,再根据角平分线的定义求出∠ABE和∠BAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解;
(2)与(1)方法相同求解;
(2)与(1)的思路相同解答.
点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,此类题目各小题的求解思路都相同.