已知平面直角坐标系xOy中,点A在抛物线y=x2+上,过A作AB⊥x轴于点B,AD⊥y轴于点D,将矩形ABOD沿对角线BD折叠后得A的对应点为A′,重叠部分(阴影)为

发布时间:2020-08-11 12:45:39

已知平面直角坐标系xOy中,点A在抛物线y=x2+上,过A作AB⊥x轴于点B,AD⊥y轴于点D,将矩形ABOD沿对角线BD折叠后得A的对应点为A′,重叠部分(阴影)为△BDC.
(1)求证:△BDC是等腰三角形;
(2)如果A点的坐标是(1,m),求△BDC的面积;
(3)在(2)的条件下,求直线BC的解析式,并判断点A′是否落在已知的抛物线上?请说明理由.

网友回答

(1)证明:由折叠的性质之:∠ABD=∠DBC,
∵四边形ABOD是矩形
∴AB∥DO
∴∠ABD=∠CDB
∴∠CBD=∠BDC
∴△BDC是等腰三角形.

(2)解:∵点A(1,m)在y=x2+上,
∴m=+=.
在直角三角形ABD中,AB=,DA=1,
∴∠ABD=30°,
∴∠CBO=30°,CO=OB?tan∠CBO=,
S△BCD=S△BDO-S△BCO=OD?OB-OB?OC=-=.

(3)解:设直线BC解析式为:y=ax+b,
∵C(0,),B(1,0);
∴,
解得,
y=-+,
设A′的坐标为(x,y),过A′作A′M⊥x轴于M,
A′M=BA′=AB=,
∴y=,
代入y=-+,
得x=-,
点A′的坐标是(-,),
将x=-代入y=x2+中
得:y=,
∴A′落在此抛物线上.
解析分析:(1)可通过证角相等来求解.由折叠的性质可得出∠ABD=∠ABD,根据AB∥OD,可得出∠ABD=∠ODB,因此∠ODB=∠CBD,CD=BC,△BDC是等腰三角形.
(2)求△BCD的面积,可用△BOD和△BOC的面积差来求,已知A的坐标为(1,m),那么可得出OB=AD=1,由于A在抛物线上,可根据抛物线的解析式求出m的值,即可得出AB、OD的长.进而可求出∠ABD的度数,也就能求出∠OBC的度数.在直角三角形OBC中,根据OB和∠OBC的度数即可求出OC的长,然后根据三角形的面积公式即可求出△BCD的面积.
(3)在(2)中已得出了B、C的坐标,可用待定系数法求出直线BC的解析式.
判定A′是否在抛物线上,首先要知道A′的坐标,可过A′作x轴的垂线,用求OC的方法求出A′的纵坐标,然后代入直线BC中即可得出A′的坐标,将A′的坐标代入抛物线的解析式中即可判断出A′是否在抛物线上.

点评:本题着重考查了待定系数法求一次函数解析式、图形折叠变换、等腰三角形的判定以及二次函数的应用等知识点,综合性较强,考查学生数形结合的数学思想方法.
以上问题属网友观点,不代表本站立场,仅供参考!