如图,D,E分别△ABC的边AB,AC的中点,给出下列结论:①BC=2DE;②△ADE∽△ABC;③AD:AE=AB:AC;④S△ADE:S四边形BCED=1:3.其中正确的结论有A.4个B.3个C.2个D.1个
网友回答
A
解析分析:根据D,E分别是△ABC的边AB,AC的中点,得到DE是△ABC的中位线,再利用中位线的性质得到DE与BC的关系,判断三角形相似,根据相似三角形的性质对所给命题进行判断.
解答:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE=BC,DE∥BC.∵DE=BC,∴BC=2DE.∴①正确.∵DE∥BC,∴△ADE∽△ABC.∴②正确.∵△ADE∽△ABC,∴AD:AE=AB:AC,∴③正确.∵DE:BC=1:2,又△ADE∽△ABC,∴S△ADE:S△ABC=1:4,∴S△ADE:S四边形BCED=1:3.∴④正确.故选A.
点评:本题考查的是相似三角形的判定与性质,根据题意得到DE是三角形的中位线,再用中位线的性质判定相似三角形,然后用相似三角形的性质判定三角形与四边形的面积关系.