如图是某宾馆大厅到二楼的楼梯设计图,已知BC=6米,AB=9米,中间平台宽度DE为2米,DM,EN为平台的两根支柱,且DM,EN均垂直于AB,垂足分别为M,N,∠EAB=30°,∠CDF=45°.则求BM的长度.(精确到0.1米)
网友回答
解:设BM=x米.
∵∠CDF=45°,∠CFD=90°,
∴CF=DF=x米,
∴BF=BC-CF=(6-x)米.
∴EN=DM=BF=(6-x)米.
∵AB=9米,DE=2米,BM=DF=x米,
∴AN=AB-MN-BM=(7-x)米.
在△AEN中,∠ANE=90°,∠EAN=30°,
∴EN=AN?tan30°.
即6-x=(7-x).
解这个方程得:x=≈4.6.
答:BM的长度约为4.6米.
解析分析:设BM=x米.由等腰直角三角形的性质知,CF=DF=x,得EN=FB=BC-CF=6-x,AN=AB-DF-ED=7-x,则在直角三角形ANE中,有EN=AN?tan30°,建立方程求得x的值.
点评:此题主要考查了解直角三角形的应用,本题通过设适当的参数,利用直角三角形的边角关系建立方程而求解是解题关键.