如图1,正方形ABCD的对角线相交于点M,正方形MNPQ与正方形ABCD全等,MN、MQ分别交正方菜ABCD的边于E、F两?点.
(1)试判断ME与MF之间的数量关系,并给出证明.
(2)若将题中的“正方形MNPQ与正方形ABCD”改为“矩形MNPQ与矩形ABCD”,且BC=2AB,其他条件不变,当矩形MNPQ与矩形ABCD的位置如图2所示时,请判断ME与MF之间的数量关系,并给出证明.
网友回答
(1)解:ME=MF.理由如下:
如图1,过点M作MG⊥BC于点G,MH⊥CD于点H.
∴∠MGE=∠MHF=90°.
∵M为正方形对角线AC、BD的交点,∴MG=MH.
又∵∠1+∠GMQ=∠2+∠GMQ=90°,
∴∠1=∠2.
在△MGE和△MHF中,
,
∴△MGE≌△MHF(ASA).
∴ME=MF.
(2)解:=.理由如下:
如图2,过点M作MG⊥BC于点G,MH⊥CD于点H.
∴∠MGE=∠MHF=90°.
∵M为矩形对角线AC、BD的交点,
∴∠1+∠GMQ=∠2+∠GMQ=90°.
∴∠1=∠2.
在△MGE和△MHF中,
∠1=∠2
∠MGE=∠MHF
∴△MGE∽△MHF.
∴=.
∵M为矩形对角线AB、AC的交点,
∴MB=MD=MC
又∵MG⊥BC,MH⊥CD,
∴点G、H分别是BC、DC的中点.
∵BC=2AB=4,
∴MG=AB,MH=BC.
∴=.
解析分析:(1)求简单的线段相等,可证线段所在的三角形全等;故M分别作MG⊥BC于G,MH⊥CD于H,易得MG=MH,而∠EMG、∠FMH都是∠GMF的余角,由此可证得∠EMG=∠FMH,即可证得△MGE≌△MHF,由此得证.
(2)如图2,此种情况与(1)类似,不同的是(1)题用到的是全等,而此题运用的是相似,过点M作MG⊥BC于点G,MH⊥CD于点H,通过证△MGE∽△MHF,得到关于ME、MF、MG、MH的比例关系式,联立矩形的性质及BC、AB的比例关系,即可求得ME、MF的比例关系.
点评:此题考查了正方形、矩形的性质,全等三角形、相似三角形的判定和性质以及勾股定理等知识的综合应用.难度较大.