如图,在平面直角坐标系xOy中,二次函数y=-x2+4x+5的图象交x轴于点A、B,交y轴于点C,顶点为P,点M是x轴上的动点.
(1)求MA+MB的最小值;
(2)求MP-MC的最大值;
(3)当M在x轴的正半轴(不包含坐标原点)上运动时,以CP、CM为邻边作平行四边形PCMD.PCMD能否为矩形?若能,求M点的坐标;若不能,简要说明理由.
(参考公式:二次函数y=ax2+bx+c图象的顶点坐标是)
网友回答
解:(1)-x2+4x+5=0,
得x1=-1,x2=5,
所以A(5,0),B(-1,0),
MA+MB的最小值为AB(或MA+MB≥AB),
即MA+MB的最小值为:MA+MB=AB=6;
(2)由y=-x2+4x+5,
x=0时,y=5,
即C(0,5),
y=-x2+4x+5=-(x-2)2+9,
故P(2,9),
作PD⊥y轴,垂足为D,
则PD=2,CD=9-5=4,
∵只有M,CP在一条直线上时,MP-MC的值最大为PC,
∴MP-MC的最大值为:;
(3)若PCMD为矩形,
即∠PCM=90°,
则∠DCP+∠MCO=90°,∵∠DCP+∠DPC=90°,
∴∠CMO=∠DCP,
∵∠COM=∠PDC=90°,
∴△PCD∽△CMO,
,
=,
解得MO=10,
即存在点M(10,0),能使PCMD为矩形.
解析分析:(1)根据二次函数y=-x2+4x+5的图象交x轴于点A、B,即y=0求出x即可,根据MA+MB的最小值为AB得出即可;
(2)根据已知求出C,P两点坐标,即可得出MP-MC的最大值为PC长度,进而得出即可;
(3)根据若PCMD为矩形,则△PCD∽△CMO,利用相似三角形的性质得出MO的长度,进而得出M点坐标即可.
点评:此题主要考查了二次函数的综合应用、矩形的判定、相似三角形的判定与性质等知识,根据图象得出MP-MC的最大值为PC是解题关键.