填空题已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为 ________.
网友回答
(-2,)解析分析:知原函数在R上单调递增,且为奇函数,由f(mx-2)+f(x)<0恒成立得mx-2<-x?xm+x-2<0,对所有m∈[-2,2]恒成立,然后构造函数f(m)=xm+x-2,利用该函数的单调性可解得x的范围.解答:易知原函数在R上单调递增,且为奇函数,故f(mx-2)+f(x)<0?f(mx-2)<-f(x)=f(-x),此时应有mx-2<-x?xm+x-2<0,对所有m∈[-2,2]恒成立,令f(m)=xm+x-2,此时只需即可,解之得-2<x<.故