如图所示,把一根绳子对折成线段AB,从点P处把绳子剪断,已知AP:BP=2:3,若剪断后的各段绳子中最长的一段为60cm,求绳子的原长.
网友回答
解:本题有两种情形:
(1)当点A是绳子的对折点时,将绳子展开如图.
∵AP:BP=2:3,剪断后的各段绳子中最长的一段为60cm,
∴2AP=60cm,
∴AP=30cm,
∴PB=45cm,
∴绳子的原长=2AB=2(AP+PB)=2×(30+45)=150(cm);
(2)当点B是绳子的对折点时,将绳子展开如图.
∵AP:BP=2:3,剪断后的各段绳子中最长的一段为60cm,
∴2BP=60cm,
∴BP=30cm,
∴AP=20cm.
∴绳子的原长=2AB=2(AP+BP)=2×(20+30)=100(cm).
综上,绳子的原长为150cm或100cm.
解析分析:本题没有给出图形,在画图时,应考虑到绳子对折成线段AB时,哪一点是绳子的端点或者哪一点是绳子的对折点的多种可能,再根据题意正确地画出图形解题.
点评:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.