市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如下表:品种??项目单价(元/棵)成活率A8092%B10098%若购买A种树x棵,购树所需的总费用为y元.
(1)求y与x之间的函数关系式;
(2)若购树的总费用不超过82 000元,则购A种树不少于多少棵?
(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A,B两种树各多少棵?此时最低费用为多少?
网友回答
解:(1)y=80x+100(900-x)
=-20x+90000(0≤x≤900且为整数);
(2)由题意得:-20x+90000≤82000,
解得:x≥400,
又因为计划购买A,B两种风景树共900棵,
所以x≤900,
即购A种树为:400≤x≤900且为整数.
(3)92%x+98%(900-x)≥94%×900
92x+98×900-98x≥94×900
-6x≥-4×900
x≤600
∵y=-20x+90000随x的增大而减小.
∴当x=600时,购树费用最低为y=-20×600+90000=78000(元).
当x=600时,900-x=300,
∴此时应购A种树600棵,B种树300棵.
解析分析:(1)根据购树的总费用=买A种树的费用+买B种树的费用,化简后便可得出y与x的函数关系式;
(2)根据(1)得到的关系式,然后将所求的条件代入其中,然后判断出购买A种树的数量;
(3)先用A种树的成活的数量+B种树的成活的数量≥树的总量×平均成活率来判断出x的取值,然后根据函数的性质判断出最佳的方案.
点评:本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题.注意根据自变量的取值范围来判断所要求的解.