如图,直线y=-x+b(b>0)与双曲线(?x>0)交于A、B两点,连接OA、OB,AM⊥y轴于M,BN⊥X轴于N;有以下结论:①OA=OB;②△AOM≌△BON;③若∠AOB=45°,则S△AOB=k;④AB=时,ON=BN=1.其中结论正确的是________.
网友回答
①②③
解析分析:①②设A(x1,y1),B(x2,y2),联立y=-x+b与y=,得x2-bx+k=0,则x1?x2=k,又x1?y1=k,比较可知x2=y1,同理可得x1=y2,即ON=OM,AM=BN,可证结论;
③作OH⊥AB,垂足为H,根据对称性可证△OAM≌△OAH≌△OBH≌△OBN,可证S△AOB=k;
④延长MA,NB交于G点,可证△ABG为等腰直角三角形,当AB=时,GA=GB=1,则ON-BN=GN-BN=GB=1;
解答:设A(x1,y1),B(x2,y2),代入y=中,得x1?y1=x2?y2=k,
联立 ,得x2-bx+k=0,
则x1?x2=k,又x1?y1=k,
∴x2=y1,
同理x2?y2=k,
可得x1=y2,
∴ON=OM,AM=BN,
∴①OA=OB,②△AOM≌△BON,正确;
③作OH⊥AB,垂足为H,
∵OA=OB,∠AOB=45°,
∵②△AOM≌△BON,正确;
∴∠MOA=∠BON=22.5°,
∠AOH=∠BOH=22.5°,
∴△OAM≌△OAH≌△OBH≌△OBN,
∴S△AOB=S△AOH+S△BOH=S△AOM+S△BON=k+k=k,正确;
④延长MA,NB交于G点,
∵NG=OM=ON=MG,BN=AM,
∴GB=GA,
∴△ABG为等腰直角三角形,
当AB=时,GA=GB=1,
∴ON-BN=GN-BN=GB=1,
∴当AB=时,ON=BN=1不正确.
正确的结论有3个,故