如图,△ABC中,D在AC上,E在AB上,且BD、CE相交于O,OB=OD,OC=2OE,若S△BOC=2,则S△ABC=________.
网友回答
12
解析分析:根据三角形的等积变换可得,S△BOC=S△DOC,S△BOC=2S△BOE,连接OA,则可得2S△AOE=S△AOD+S△DOC,S△AOD=S△AOE+S△BOE,可得出S△AOE,S△AOD,即可解答;
解答:解:∵OB=OD,OC=2OE,
∴S△BOC=S△DOC,S△BOC=2S△BOE,又S△BOC=2,
∴S△DOC=2,S△BOE=1,
连接OA,则可得,
2S△AOE=S△AOD+S△DOC,
S△AOD=S△AOE+S△BOE,
∴S△AOE=3,S△AOD=4,
∴S△ABC=3+4+1+2+2=12.
故