黑板上写有从1开始的若干个连续的奇数:1,3,5,7,…,擦去其中的一个奇数以后,剩下的所有奇数之和为100,那么擦去的奇数是________.

发布时间:2020-07-30 16:13:44

黑板上写有从1开始的若干个连续的奇数:1,3,5,7,…,擦去其中的一个奇数以后,剩下的所有奇数之和为100,那么擦去的奇数是________.

网友回答

21

解析分析:假设一共有n个数相加,从1开始的若干个连续的奇为等差数列,因为擦去其中的一个奇数以后,剩下的所有奇数之和为100,则此等差数列的和为奇数,奇数数列从1加到2n-1的和据高斯求和公式可表示为:(1+2n-1)×n÷2=n2>100,因为102=100,112=121>100,所以n=11,则擦去的数为:121-100=21.

解答:奇数数列从1加到2n-1的和为:(1+2n-1)×n÷2=n2>100,102=100,112=121>100,所以n=11,则擦去的数为:121-100=21.答:擦去的奇数是21.故
以上问题属网友观点,不代表本站立场,仅供参考!