如图,在△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于D,AB=10,则DB的长是多少?

发布时间:2020-08-10 15:35:35

如图,在△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于D,AB=10,则DB的长是多少?

网友回答

解:∵∠A:∠B:∠C=1:2:3,
∴设∠A、∠B、∠C分别为k、2k、3k,
∴k+2k+3k=180°,
解得k=30°,
∴∠A=30°,∠B=60°,∠C=90°,
∵CD⊥AB,
∴∠BCD=90°-∠B=90°-60°=30°,
∴BC=AB=×10=5,
DB=BC=×5=.
解析分析:根据比例设∠A、∠B、∠C分别为k、2k、3k,利用三角形内角和定理求出k,从而得到∠A、∠B、∠C的度数,再求出∠BCD=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半解答即可.

点评:本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,利用设k法求出△ABC各内角的度数是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!