如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=,则∠D的度数是________.

发布时间:2020-08-08 20:09:23

如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=,则∠D的度数是________.

网友回答

30°
解析分析:由圆周角定理、特殊角的三角函数值求得∠CAB=30°;然后根据直角三角形的两个锐角互余的性质、等腰三角形的性质、对顶角相等求得∠EOD=∠COB=60°;最后在直角三角形ODE中求得∠D的度数.

解答:∵AB为⊙O直径,
∴∠ACB=90°(直径所对的圆周角是直角);
又∵sinA=,
∴∠CAB=30°,
∴∠ABC=60°(直角三角形的两个锐角互余);
又∵点O是AB的中点,
∴OC=OB,
∴∠OCB=OBC=60°,
∴∠COB=60°,
∴∠EOD=∠COB=60°(对顶角相等);
又∵DE⊥AB,
∴∠D=90°-60°=30°.
以上问题属网友观点,不代表本站立场,仅供参考!