由0到9这十个数字所组成的没有重复数字的五位数中,满足千位、百位、十位上的数字成

发布时间:2020-07-09 11:49:51

由0到9这十个数字所组成的没有重复数字的五位数中,满足千位、百位、十位上的数字成递增等差数列的五位数共有













A.720个












B.684个











C.648个











D.744个

网友回答

D解析分析:题目要求中间三位是成递增的等差数列,这样可以列举出所有的情况,当公差是1时,列举出公差是1的8种结果,分别做出共有的数字个数,在计算当公差是2,3,4,公差不可能时5,根据分类计数原理得到结果.解答:当公差是1时,千位、百位、十位上的数字可以是:012,123,234,345,456,567,678,789,当中间三位是012时,可以组成数字A72=42,当中间数字是123,234,345,456,567,678,789时,可以组成7×6×6=252,当公差是2时,千位、百位、十位上的数字可以是:024,135,246,357,468,579这样共组成42+5×6×6=222,当公差是3时,千位、百位、十位上的数字可以是:036,147,258,369可以组成数字的个数是42+3×6×6=150,当公差是4时,千位、百位、十位上的数字可以是:048,159可以组成数字的个数是42+36=78,根据分类计数原理知共有42+252+222+150+78=744,故选D.点评:本题考查分类计数原理,考查等差数列,考查数字问题,实际上数字问题是一种比较典型的题目,只是解题时要注意做到不重不漏.
以上问题属网友观点,不代表本站立场,仅供参考!