如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD,连接CE,则∠ECA的度数为________.
网友回答
40°
解析分析:在BC上截取BF=AB,连接DF,根据BD是∠ABC的平分线,得到一对对应角的相等,再加上一对公共边,利用“SAS”可得△ABD≌△FBD,根据全等三角形的对应边、对应角相等,得到DF=DA=DE,∠A=∠DFB,然后利用等边对等角求出∠ACB的度数,再根据三角形的内角和定理求出∠A的度数,进而得到∠DFB的度数,再根据对顶角的相等,利用∠ADB求出∠EDC的度数,从而得到∠FDC=∠EDC,再加上一对公共边,根据“SAS”得出△DCE≌△DCF,根据全等三角形的对应角相等即可得出