如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线与x轴、y轴分别相交于点D、点E,连接AC并延长与y轴相交于点B,点B的坐标为(0,).
(1)求证:OE=CE;
(2)请判断直线CD与⊙P位置关系,证明你的结论,并请求出⊙P的半径长.
网友回答
解:(1)证明:连接OC,
∵直线y=x+2与y轴相交于点E,
∴点E的坐标为(0,2),即OE=2.
又∵点B的坐标为(0,4),
∴OB=4,
∴BE=OE=2,
又∵OA是⊙P的直径,
∴∠ACO=90°,即OC⊥AB,
∴OE=CE(直角三角形斜边上的中线等于斜边的一半)
(2)直线CD是⊙P的切线.
①证明:连接PC、PE,由①可知:OE=CE.
在△POE和△PCE,,
∴△POE≌△PCE,
∴∠POE=∠PCE.
又∵x轴⊥y轴,
∴∠POE=∠PCE=90°,
∴PC⊥CE,即:PC⊥CD.
又∵直线CD经过半径PC的外端点C,
∴直线CD是⊙P的切线;
②∵对,当y=0时,x=-6,即OD=6,
在Rt△DOE中,,
∴CD=DE+EC=DE+OE=.
设⊙P的半径为r,则在Rt△PCD中,由勾股定理知PC2+CD2=PD2,
即?r2+()2=(6+r)2,
解得?r=6,即⊙P的半径长为6.
解析分析:(1)连接OC,利用已知条件计算出CE和OB的长度,再证明△BCO为直角三角形,利用:直角三角形斜边上的中线等于斜边的一半即可证明OE=CE;
(2)①直线CD是⊙P的切线,证明PC⊥CD.②设⊙P的半径为r,则在Rt△PCD中,由勾股定理得到关于r的方程,求出r即可.
点评:本题综合考查了切线的性质、判定定理、勾股定理以及直角三角形的性质:直角三角形斜边上的中线等于斜边的一半,具有较强的综合性,有一定的难度.