已知,如图,AD∥BC,∠A=90°,AD=BE,∠EDC=∠ECD,请你说明下列结论成立的理由:(1)△AED≌△BCE,(2)AB=AD+BC.

发布时间:2020-08-11 14:07:46

已知,如图,AD∥BC,∠A=90°,AD=BE,∠EDC=∠ECD,请你说明下列结论成立的理由:(1)△AED≌△BCE,(2)AB=AD+BC.

网友回答

证明:(1)∵AD∥BC,∠A=90°,
∴∠B=90°,
∵∠EDC=∠ECD,
∴ED=EC,
在直角△AED和直角△BCE中,,
∴△AED≌△BCE;

(2)∵△AED≌△BCE,
∴AE=BC,AD=BE,
又∵AB=AE+BE,
∴AB=AD+BC.
解析分析:(1)由AD∥BC,∠A=90°,根据两直线平行,同旁内角互补,可得∠B=90°,根据直角三角形的HL定理,即可证得;
(2)由(1)△AED≌△BCE,根据全等三角形的性质,可得AE=BC,又AB=AE+BE,等量代换,即可得出;

点评:本题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具,在判定三角形全等时,关键是选择恰当的判定条件.
以上问题属网友观点,不代表本站立场,仅供参考!