本题共有2个小题,每1小题满分6分.已知集合A={x|3x2+x-2≥0,x∈R},.
(1)用区间表示集合A、B;
(2)求A∩B.
网友回答
解:(1)
∵集合B可化为:B={x∈R|(x-3)(4x-3)>0},
∴,
所以
(2)
解析分析:(1)由题意集合A={x|3x2+x-2≥0,x∈R},B={x∈R|(x-3)(4x-3)>0},根据一元二次不等式的解法,解出集合A,B,从而求解.
(2)由(1)求出集合A,B中的一元二次不等式的解集确定出集合A,B,然后求出集合A和集合B的交集即可.
点评:此题考查的一元二次不等式的解法及集合间的交、并、补运算,是高考中的常考内容,要认真掌握,并确保得分.