甲、乙两车均沿同一平直公路同向行驶.初始时刻,甲车在乙车前方s0=75m处.甲车始终以v1=10m/s的速度匀速运动.乙车作初速度为零,加速度a=2m/s2的匀加速直线运动.求:
(1)乙车追上甲车之前,两车之间的最大距离sm;
(2)经过多少时间t,乙车追上甲车?
(3)乙车一追上甲车,乙车就立即刹车,减速过程加速度大小a'=5m/s2,则再经过多少时间t'甲、乙两车再次相遇.
网友回答
解:(1)两车速度相等时,相距最远,用时为t1,则:
v1=at1①
两车距离②
由①②得:sm=100m
(2)乙车追上甲车用时为t,此间比加车多走s0,即:
at2-v1t=s0
解得:t=15s
(3)设乙车追上甲车时速度为v2,则:
v2=at=2×15m/s=30m/s
设从刹车到停止所用时间为t2,则:
设两车再次相遇用时t3,应满足:
解得:t3=8s>6s
所以,乙车停下后,甲车才追上,故乙车此后行驶距离:
s=
时间:
答:(1)乙车追上甲车之前,两车之间的最大距离100m
(2)经过多15s乙车追上甲车
(3)再经过9s甲、乙两车再次相遇
解析分析:(1)两车速度相等时,相距最远,由位移差得最远距离
(2)乙车追上甲车时,两车位移差为s0,可得时间
(3)乙车追上甲车时,速度较大,此后乙车先冲出,当再次相遇,两车位移再次相同,可得时间,但要先判断乙车停止所用时间,比较是乙车停止前相遇还是停止后相遇
点评:交通工具减速问题,要判断停止所用时间,考虑减速的最小速度为零而不是负值,此外,注意速度相等的临界条件,注意位移关系和时间关系