如图所示,电动机带动滚轮B匀速转动,在滚轮的作用下,将金属杆从最底端A送往倾角θ=30°的足够长斜面上部.滚轮中心B与斜面底部A的距离为L=6.5m,当金属杆的下端运

发布时间:2020-08-08 17:44:18

如图所示,电动机带动滚轮B匀速转动,在滚轮的作用下,将金属杆从最底端A送往倾角θ=30°的足够长斜面上部.滚轮中心B与斜面底部A的距离为L=6.5m,当金属杆的下端运动到B处时,滚轮提起,与杆脱离接触.杆由于自身重力作用最终会返回斜面底部,与挡板相撞后,立即静止不动.此时滚轮再次压紧杆,又将金属杆从最底端送往斜面上部,如此周而复始.已知滚轮边缘线速度恒为v=4m/s,滚轮对杆的正压力FN=2×104N,滚轮与杆间的动摩擦因数为μ=0.35,杆的质量为m=1×103Kg,不计杆与斜面间的摩擦,取g=10m/s2.
求:(1)在滚轮的作用下,杆加速上升的加速度;
(2)杆加速上升至与滚轮速度相同时前进的距离;
(3)杆从最低端开始上升到再次回到最低端经历的时间.

网友回答

解:(1)f=μN=7×103N
a==2m/s2
(?2?)s==4m
(3)匀加速时间??t1==2s
匀速时间????t2==0.625s
滚轮提起后到杆回到最低端过程,杆做匀变速运动:a’=gsinθ
L=v0t+at2
6.5=-4t3+×5t32
得t3=2.6s
∴T=t1+t2+t3=5.225s.
答:(1)在滚轮的作用下,杆加速上升的加速度为2m/s2.
(2)杆加速上升至与滚轮速度相同时前进的距离为4m.
(3)杆从最低端开始上升到再次回到最低端经历的时间为5.225s.
解析分析:(1)杆加速上升时,受到沿斜面向上的摩擦力、重力、支持力,根据牛顿第二定律求出杆加速上升的加速度.
(2)根据匀变速直线运动的速度位移公式求出杆加速上升至与滚轮速度相同时前进的距离.
(3)杆子在整个过程中先向上做匀加速直线运动,在做匀速直线运动,脱离滚轮后,向上做匀减速直线运动,返回做匀加速直线运动.根据运动学公式求出整个过程中的运动时间.

点评:解决本题的关键理清杆子在整个过程中的运动情况,结合牛顿第二定律和运动学公式进行求解.
以上问题属网友观点,不代表本站立场,仅供参考!