如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=2,则PP′=________.
网友回答
2
解析分析:根据正方形的性质得到∠ABC=90°,再根据旋转的性质得∠PBP′=∠ABC=90°,PB=P′B=2,则△PBP′为等腰直角三角形,然后根据等腰直角三角形的性质求解.
解答:∵四边形ABCD为正方形,
∴∠ABC=90°,
∵△ABP绕点B顺时针方向旋转能与△CBP′重合,
∴∠PBP′=∠ABC=90°,PB=P′B=2,
∴△PBP′为等腰直角三角形,
∴PP′=2PB=2.
故