张师傅在铺地板时发现,用8块大小一样的长方形瓷砖恰好可以拼成一个大的长方形,如图1.然后,他用这8块瓷砖又拼出一个正方形,如图2,中间恰好空出一个边长为1的小正方形(

发布时间:2020-08-05 06:29:02

张师傅在铺地板时发现,用8块大小一样的长方形瓷砖恰好可以拼成一个大的长方形,如图1.然后,他用这8块瓷砖又拼出一个正方形,如图2,中间恰好空出一个边长为1的小正方形(阴影部分),假设长方形的长y,宽为x,且y>x.

(1)请你求出图1中y与x的函数关系式;
(2)求出图2中y与x的函数关系式;
(3)在图3中作出两个函数的图象,写出交点坐标,并解释交点坐标的实际意义;
(4)根据以上讨论完成下表,观察x与y的关系,回答:如果给你任意8个相同的长方形,你能否拼成类似图1和图2的图形?说出你的理由. ?图(2)中小正方形边长?1?2?3?4…?x?3?6?9?12…?y?5?10?15?20…

网友回答

解:(1)由图1得:3y=5x,

(2)由图2得8xy+1=(2x+y)2
整理得:(2x-y)2=1
2x-y=±1
∵∴
x=-3<0
∴2x-y=-1不成立
∴2x-y=1
即y=2x-1


(3)交点坐标(3,5)
实际意义解答不唯一
例①:瓷砖的长为5,宽为3时,能围成图1,图2的图形
例②:当瓷砖长为5,宽为3时,围成图2的正方形中的小正方形边长为1.
?图(2)中小正方形边长?1?2?3?4…?x?3?6?9?12…?y?5?10?15?20…
(4)情况①:不能,长方形的长与宽若不能满足y=,则不能
情况②:能,长方形的长与宽只要满足y=即可
情况③:综合上述两种说法,只要符合其中一种情况均给分.

解析分析:(1)根据图1中长与宽的等量关系列出方程,即可求出图1中y与x的函数关系式;
(2)根据长方形的面积×8+小正方形的面积=正方形的面积,列出方程即可得出;
(3)根据函数的解析式及图象性质作出它们的图象,得出交点坐标,并结合实际解释交点坐标的实际意义;
(4)由(1)可知长方形的长与宽若不能满足y=,则不能;长方形的长与宽只要满足y=,则能.

点评:本题重点考查了一次函数图象和实际应用相结合的问题,熟悉长方形的面积公式,在做题时结合图形明确长方形中长与宽的等量关系.同时注意根据实际情况分类讨论.
以上问题属网友观点,不代表本站立场,仅供参考!