(1)点(2,3)关于x轴的对称点的坐标是______,(2)点(2,1)向右平移4个单位后的坐标是______;直线y=2x+4向右平移4个单位后的解析式是____

发布时间:2020-08-06 00:20:42

(1)点(2,3)关于x轴的对称点的坐标是______,
(2)点(2,1)向右平移4个单位后的坐标是______;直线y=2x+4向右平移4个单位后的解析式是______,
(3)求直线y=2x+4,绕点(0,1)逆时旋转90°后的直线解析式?

网友回答

(1)点P(2,3)关于x轴的对称点是(2,-3),
(2)平移后点的横坐标为:2+4=6;纵坐标不变为1;
∴点(2,1)向右平移4个单位后的坐标是(6,1).
据题意,得直线向右平移4个单位,
即对应点的纵坐标不变,横坐标加4,
所以得到的解析式是y=2(x-4)+4=2x-4.
(3)y=2x+4与坐标轴的交点为(0,4),(-2,0);
旋转90°后的坐标为:(4,0),(0,2);
令旋转后的直线解析式为y=kx+b,把(4,0),(0,2),代入y=kx+b,
得 ,
∴k=-,
∴旋转后的直线解析式为:y=-x+2.

解析分析:(1)根据关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)让横坐标加4,纵坐标不变即可得到平移后的坐标,根据平移性质可由已知的解析式写出新的解析式;
(3)将平移后的直线绕坐标原点顺时针旋转90°,则直线上的点也是顺时针旋转90°,找出直线与坐标轴的交点坐标,再写出旋转后的坐标,有两点的坐标就可确定直线解析式.

点评:本题主要考查一次函数图象与几何变换和坐标与图形的变化的知识点,本题难度不是很大,但是很容易出错,需要同学们细心.
以上问题属网友观点,不代表本站立场,仅供参考!