如图,⊙O的直径AB=8,P是上半圆(A、B除外)上任一点,∠APB的平分线交⊙O于C,弦EF过AC、BC的中点M、N,则EF的长是A.4B.2C.6D.2

发布时间:2020-07-30 05:13:11

如图,⊙O的直径AB=8,P是上半圆(A、B除外)上任一点,∠APB的平分线交⊙O于C,弦EF过AC、BC的中点M、N,则EF的长是A.4B.2C.6D.2

网友回答

A

解析分析:由于PC平分∠APB,易得=,如果连接OC交EF于D,根据垂径定理可知:OC必垂直平分EF.由于M、N是AC、BC的中点,因此MN是△ABC的中位线,根据平行线分线段成比例定理可得:OD=CD=OC=2.连接OE,可在Rt△OED中求出ED的长,即可得出EF的值.

解答:解:∵PC是∠APB的角平分线,∴弧AC=弧BC;∴AC=BC;∵AB是直径,∴∠ACB=90°.即△ABC是等腰直角三角形.连接OC,交EF于点D,则OC⊥AB;∵M、N是AC、BC的中点,∴MN∥AB;∴OC⊥EF,OD=OC=2.连接OE,根据勾股定理,得:DE=2,EF=2ED=4.故选A.

点评:此题综合运用了圆周角定理及其推论发现等腰直角三角形,再进一步根据等腰三角形的性质以及中位线定理,求得EF的弦心距,最后结合垂径定理和勾股定理求得弦长.
以上问题属网友观点,不代表本站立场,仅供参考!