如图,AB切⊙O于点B,AD过圆心,且与⊙O相交于C、D两点,连接BD,若⊙O的半径为1,AO=2CO,则BD的长度为________.
网友回答
解析分析:如图:连接OB,过点O作OE⊥BD于点E;根据切线的性质知道∠ABO=90°,由OB=OC=OD,AO=2CO得到AO=2BO,进一步得到∠A=30°,∠AOB=60°,所以∠D=30°;而⊙O的半径为1,再根据垂径定理和三角函数可以求出ED,BD.
解答:解:如图:
连接OB,过点O作OE⊥BD于点E;
∵AB切⊙O于点B,
∴∠ABO=90°;
∵OB=OC=OD,AO=2CO,
∴AO=2BO,∠D=∠OBD,
∴∠A=30°,
∴∠AOB=60°,
∴∠D=30°;
∵⊙O的半径为1,
∴OE=,ED=,
∴BD=.
故填空