如图,?ABCD中,E是BC边的中点,连接AE,F为CD边上一点,且满足∠DFA=2∠BAE.(1)若∠D=105°,∠DAF=35°.求∠FAE的度数;(2)求证:

发布时间:2020-08-07 00:45:46

如图,?ABCD中,E是BC边的中点,连接AE,F为CD边上一点,且满足∠DFA=2∠BAE.
(1)若∠D=105°,∠DAF=35°.求∠FAE的度数;
(2)求证:AF=CD+CF.

网友回答

(1)解:∵∠D=105°,∠DAF=35°,
∴∠DFA=180°-∠D-∠DAF=40°(三角形内角和定理).
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD(平行四边形对边平行且相等).
∴∠DFA=∠FAB=40°(两直线平行,内错角相等);
∵∠DFA=2∠BAE(已知),
∴∠FAB=2∠BAE(等量代换).
即∠FAE+∠BAE=2∠BAE.
∴∠FAE=∠BAE;
∴2∠FAE=40°,
∴∠FAE=20°;

(2)证明:在AF上截取AG=AB,连接EG,CG.
∵∠FAE=∠BAE,AE=AE,
∴△AEG≌△AEB.
∴EG=BE,∠B=∠AGE;
又∵E为BC中点,∴CE=BE.
∴EG=EC,∴∠EGC=∠ECG;
∵AB∥CD,∴∠B+∠BCD=180°.
又∵∠AGE+∠EGF=180°,∠AGE=∠B,
∴∠BCF=∠EGF;
又∵∠EGC=∠ECG,
∴∠FGC=∠FCG,∴FG=FC;
又∵AG=AB,AB=CD,
∴AF=AG+GF=AB+FC=CD+FC.
解析分析:(1)根据平行四边形的性质、平行线的性质证得∠DFA=∠FAB=40°;然后结合已知条件∠DFA=2∠BAE求得∠FAE=∠BAE,从而求得∠FAE的度数;
(2)在AF上截取AG=AB,连接EG,CG.利用全等三角形的判定定理SAS证得△AEG≌△AEB,由全等三角形的对应角相等、对应边相等知EG=BE,∠B=∠AGE;然后由中点E的性质平行线的性质以及等腰三角形的判定与性质求得CF=FG;最后根据线段间的和差关系证得结论.

点评:本题考查了平行四边形的性质、全等三角形的判定与性质.利用平行四边形的性质,可以证角相等、线段相等.其关键是根据所要证明的全等三角形,选择需要的边、角相等条件.
以上问题属网友观点,不代表本站立场,仅供参考!