已知:如图,梯形ABCD中,AB∥CD,AD=BC,对角线AC、BD交于M,AB=2,CD=4,∠CMD=90°,求:BD的长.
网友回答
解:如图,过点B作BE∥AC交DC的延长线于点E,
∴∠EBD=∠CMD=90°,
∵AB∥CD,
∴四边形ACEB是平行四边形,
∴AC=BE,CE=AB,
∵AB=2,CD=4,
∴DE=DC+CE=DC+AB=4+2=6,
∵梯形ABCD中,AB∥CD,AD=BC,
∴AC=BD,
∴BD=BE,
在Rt△BDE中,由勾股定理得,BD2+BE2=DE2,
即BD2+BD2=62,
解得BD=3.
故