①求f(x)=x(a-x) x∈[-1,1]的最大值g(a)②设函数f(x)=x²+|x-

发布时间:2021-03-14 22:47:08

①求f(x)=x(a-x) x∈[-1,1]的最大值g(a)②设函数f(x)=x²+|x-2|-1 ,x∈R (1)判断函数奇偶性 (2)f(x)最小值问下2L的朋友,函数的奇偶性不是在整个定义域上都应该一样的吗?如果不一样岂不是非奇非偶函数了?

网友回答

1.分情况讨论:
a/2>1即a>2时,g(a)=f(1)=a-1
a/2∈[-1,1]∈即a∈[-2,2]时,g(a)=a的2次方/4
a/2<1即a<2时,g(a)=f(-1)=-a-1
2.f(-x)=(-x)^2+|-x-2|-1
=x^2+|-x-2|-1
分段分析x-2|x-2|=2-x
|-x-2|当x>0=2+x当-2=2-xx=x-2所以x-2>0|x-2|=x-2
因此-2x最小值 分段考虑
|x-2|>0minf(x)无解
|x-2|minf(x)=(x-1/2)^2+3/4
=3/4======以下答案可供参考======
供参考答案1:
1.分情况讨论:
a/2>1即a>2时,g(a)=f(1)=a-1
a/2∈[-1,1]∈即a∈[-2,2]时,g(a)=a的2次方/4
a/2<1即a<2时,g(a)=f(-1)=-a-1
2.(1)f(-x)=(-x)²+|-x-2|-1=x²+|x+2|-1≠f(x),
且 f(-x)≠-f(x),
∴f(x)是非奇非偶函数;
(2)①x≥2时,f(x)=x²+x-3,f'(x)=2x+1,令f'(x)=0,有x=-1/2<2,
而x≥2时f'(x)>0,∴f(x)min=f(2)=3;
②x<2时,f(x)=x²-x+1,f'(x)=2x-1,令f'(x)=0,有x=1/2,
而1/2<x<2时f'(x)>0,x<0.5时f'(x)<0,
∴f(x)min=f(1/2)=3/4;
综上所述,f(x)min=f(1/2)=3/4。
供参考答案2:
1.a/2>1即a>2时,g(a)=f(1)=a-1
a/2∈[-1,1]∈即a∈[-2,2]时,g(a)=a的2次方/4
a/2<1即a<2时,g(a)=f(-1)=-a-1
2.(1)f(-x)=(-x)²+|-x-2|-1=x²+|x+2|-1≠f(x),
且 f(-x)≠-f(x),
∴f(x)是非奇非偶函数;
(2)①x≥2时,f(x)=x²+x-3,f'(x)=2x+1,令f'(x)=0,有x=-1/2<2,
而x≥2时f'(x)>0,∴f(x)min=f(2)=3;
②x<2时,f(x)=x²-x+1,f'(x)=2x-1,令f'(x)=0,有x=1/2,
而1/2<x<2时f'(x)>0,x<0.5时f'(x)<0,
∴f(x)min=f(1/2)=3/4;
综上所述,f(x)min=f(1/2)=3/4。
已知函数f(x)=x2+2ax+2,x∈[-5,5].1,当a=-1时,求函数f(x)的最大值和最小值记函数f(x)在区间[-5,5]上的最小值为g(a),求g(a)的函数表达式。要过程- -当a=-1时,求函数f(x)的最大值和最小值f(x)=x^2-2x+2=(x-1)^2+1 最小值是x=1时,f(x)=1,由于这个函数关于x=1对称,而-5到1点的距离比5到1点的距离远,所以最大值在x=-5处,f(-5)=37回答人的补充 2009-10-05 13:39 f(x)在区间[-5,5]上的最小值为g(a),求g(a)的函数表达式f(x)=(x+a)^2-a^2+2当-5当-a5时,函数在〔-5,5〕上是增函数,最小值在x=-5时,g(a)=27-10a当-a>-5 a
以上问题属网友观点,不代表本站立场,仅供参考!