如图,在?ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在B′,C′处,线段EC′与线段AF交于点G,连接DG,

发布时间:2020-08-06 10:45:34

如图,在?ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G.
求证:(1)∠1=∠2;
????? (2)DG=B′G.

网友回答

证明:(1)∵在平行四边形ABCD中,DC∥AB,
∴∠2=∠FEC,
由折叠得:∠1=∠FEC,
∴∠1=∠2;

(2)∵∠1=∠2,
∴EG=GF,
∵AB∥DC,
∴∠DEG=∠EGF,
由折叠得:EC′∥B′F,
∴∠B′FG=∠EGF,
∵DE=BF=B′F,
∴DE=B′F,
∴△DEG≌△B′FG,
∴DG=B′G.

解析分析:(1)根据平行四边形得出DC∥AB,推出∠2=∠FEC,由折叠得出∠1=∠FEC=∠2,即可得出
以上问题属网友观点,不代表本站立场,仅供参考!