如图,已知△ABC为等腰直角三角形,D为斜边AB上任意一点,(不与点A、B重合),连接CD,作EC⊥DC,且EC=DC,连接AE,则∠EAC为________度.

发布时间:2020-08-06 05:34:55

如图,已知△ABC为等腰直角三角形,D为斜边AB上任意一点,(不与点A、B重合),连接CD,作EC⊥DC,且EC=DC,连接AE,则∠EAC为________度.

网友回答

45

解析分析:由等腰直角三角形ABC的两腰相等的性质推知AC=CB,再根据已知条件“∠ACB=∠DCE=90°”求得∠ACE=90°-∠ACD=∠DCB,然后再加上已知条件DC=EC,可以根据全等三角形的判定定理SAS判定△ACE≌△BCD;最后由全等三角形的对应角相等的性质证明结论即可.

解答:∵△ABC是等腰直角三角形,∠ACB=90°,
∴AC=CB.
∵∠ACB=∠DCE=90°,
∴∠ACE=90°-∠ACD=∠DCB.
在△ACE和△BCD中,
?,
∴△ACE≌△BCD(SAS).
∴∠B=∠EAC(全等三角形的对应角相等).
∵∠B=45°,
∴∠EAC=45°.
以上问题属网友观点,不代表本站立场,仅供参考!