如图(1),四边形ABCD为平行四边形,E在CD上,将△CBE沿BE翻折,点C正好落在AD边上的点C′处.(1)在图(1)中,请直接写出四对相等的线段;(2)将图(1

发布时间:2020-08-07 19:26:45

如图(1),四边形ABCD为平行四边形,E在CD上,将△CBE沿BE翻折,点C正好落在AD边上的点C′处.
(1)在图(1)中,请直接写出四对相等的线段;
(2)将图(1)中的△ABC′剪下拼接在图(2)中△DCF的位置上(其中△ABC′的三个顶点A、B、C′分别与△DCF的三个顶点D、C、F重合,并且图(2)的点C′、D、F三点在同一直线上)试证明图(2)中的四边形BCFC′是菱形.

网友回答

(1)解:写出AB=CD,AD=BC,BC=BC',EC=EC',BC'=AD中的任意四对相等线段即可;

(2)证明一:在图甲中
∵四边形ABCD为平行四边形BC=AD,BC∥C'D
在图甲与图乙中依题意知△ABC'≌△DCF,∴AC'=DF
∴AC'+C'D=C'D+DF
∴AD=C'F,即BC=C'F.
又∵BC∥C'F
∴四边形BCFC'为平行四边形,
由折叠的性质知BC=BC'
∴四边形BCFC'为菱形.

证明二:∵C',D,F三点共线,又△ABC'的三个顶点A,B,C'分别与△DCF的三个顶点D,C,F重合
∴△ABC'≌△DCF
∴AC'=DF,AC'+C'D=C'D+DF
即AD=C'F
又∵四边形ABCD是平行四边形,BC∥C'F
∴四边形BCFC'是平行四边形,
又BC=BC'
∴平行四边形BCFC'是菱形.
解析分析:(1)、由平行四边形的性质知,AB=CD,AD=BC,由折叠的性质知,BC=BC′,CE=C′E.
(2)、在图甲中,由平行四边形的性质知,BC=AD,BC∥C'D,在图甲与图乙中依题意知△ABC'≌△DCF?AC'=DF?AC'+C'D=C'D+DF?AD=C'F,即得BC=C'F,易证明四边形BCFC'为平行四边形,由折叠的性质知BC=BC',由一组邻边相等的平行四边形是菱形得,四边形BCFC'为菱形.

点评:本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、平行四边形的判定和性质,菱形的判定求解.
以上问题属网友观点,不代表本站立场,仅供参考!