(1)解方程:2x(x-3)+x=3
(2)解方程:x2+4x-6=0.
网友回答
解:(1)移项得:2x(x-3)+x-3=0,
分解因式得:(x-3)(2x+1)=0,
可得x-3=0或2x+1=0,
解得:x1=3,x2=-;
(2)x2+4x-6=0,
变形得:x2+4x=6,
配方得:x2+4x+4=10,即(x+2)2=10,
开方得:x+2=±,
解得:x1=-2+,x2=-2-.
解析分析:(1)将方程右边的移项到左边,提取公因式x-3化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;
(2)将方程常数项移到右边,两边都加上4,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.
点评:此题考查了解一元二次方程-因式分解法,利用此方法解方程时,首先将方程左边化为积的形式,右边化为0,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.