(1)如图1,∠A=50°,∠BDC=70°,DE∥BC,交AB于点E,BD是△ABC的角平分线.求△BDE各内角的度数.
(2)完成下列推理过程
已知:如图2,AD⊥BC,EF⊥BC,∠1=∠2,求证:DG∥AB
证明:AD⊥BC,EF⊥BC(已知)
∴∠EFB∠ADB=90°______
∴EF∥AD
∴∠1=∠BAD______
又∠1=∠2(已知)
∴______=____________
∴DG∥AB.
网友回答
解:(1)∵∠A=50°,∠BDC=70°,
∴∠ABD=∠BDC-∠A=20°,
∵BD是△ABC的角平分线,
∴∠DBC=∠ABD=20°,
∵DE∥BC,
∴∠BDE=∠DBC=20°,
∴∠BED=180°-∠EBD-∠EDB=140°;
(2)∵AD⊥BC,EF⊥BC(已知)
∴∠EFB=∠ADB=90°(垂直定义)
∴EF∥AD(同位角相等,两直线平行)
∴∠1=∠BAD(两直线平行,同位角相等)
又∵∠1=∠2(已知)
∴∠2=∠BAD(等量代换)
∴DG∥AB.
故