如图,点A1、A2、A3、…、An在抛物线y=x2图象点B1、B2、B3、…、Bn在y轴上,若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都为等腰直角三角形

发布时间:2020-08-13 06:09:26

如图,点A1、A2、A3、…、An在抛物线y=x2图象点B1、B2、B3、…、Bn在y轴上,若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都为等腰直角三角形(点B0是坐标原点),则△A2012B2011B2012的腰长=________.

网友回答

2012
解析分析:利用等腰直角三角形的性质及点的坐标的关系求出第一个等腰直角三角形的腰长,用类似的方法求出第二个,第三个…的腰长,观察其规律,最后得出结果.

解答:作A1C⊥y轴,A2E⊥y轴,垂足分别为C、E.
∵△A1BOB1、△A2B1B2都是等腰直角三角形
∴B1C=B0C=DB0=A1D,B2E=B1E
设A1(a,b)∴a=b将其代入解析式y=x2得:
∴a=a2
解得:a=0(不符合题意)或a=1,由勾股定理得:A1B0=,
∴B1B0=2,
过B1作B1N⊥A2F,设点A(x2,y2)
可得A2N=y2-2,B1N=x2=y2-2,
又点A2在抛物线上,所以y2=x22,
(x2+2)=x22,
解得x2=2,x2=-1(不合题意舍去),
∴A2B1=2,
同理可得:
A3B2=3
A4B3=4?? …
∴A2012B2011=2012
∴△A2012B2011B2012的腰长为:2012
以上问题属网友观点,不代表本站立场,仅供参考!