如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位后得到△DEF,则判断四边形AECD为________.
网友回答
矩形
解析分析:根据平移性质得出AD=BE=1,AD∥BC,求出CE=AD,得出平行四边形AECD,根据等腰三角形的三线合一定理得出∠AEC=90°,根据矩形的判定推出即可.
解答:
四边形AECD是矩形,
理由是:连接AE和CD,
∵边长为2个单位的等边△ABC沿边BC向右平移1个单位后得到△DEF,
∴AD=BE=1,AD∥BC,
∴CE=2-1=1=AD,
∴四边形AECD是平行四边形,
∵△ABC是等边三角形,
∴AB=AC,
∵BE=EC=1,
∴AE⊥BC,
∴∠AEC=90°,
∴平行四边形AECD是矩形,
故