如图,平行四边形ABCD中,E、F分别是对角线BD上的两点,且BE=DF,连接AE、AF、CE、CF.四边形AECF是什么样的四边形,说明你的道理.

发布时间:2020-08-11 06:53:30

如图,平行四边形ABCD中,E、F分别是对角线BD上的两点,且BE=DF,连接AE、AF、CE、CF.四边形AECF是什么样的四边形,说明你的道理.

网友回答

解:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠ABE=∠CDF,
∵BE=DF,
∴△ABE≌△CDF,
∴AE=CF,
同理:CE=AF,
∴四边形AECF是平行四边形.
解析分析:由平行四边形的性质可得AB∥CD,AB=CD,已知BE=DF,从而可利用SAS判定△ABE≌△CDF,根据全等三角形的性质可得到AE=CF,同理可得到CE=AF,根据SSS判定△AEF≌△CFE,从而可推出AE∥CF,即可根据有一组对边平行且相等的四边形是平行四边形.

点评:此题主要考查学生对平行四边形的性质及判定和全等三角形的判定与性质的综合运用能力.
以上问题属网友观点,不代表本站立场,仅供参考!