解下列方程:①x2+4x-3=0(?用适当的方法);②3x2-6x-4=0(用配方法).

发布时间:2020-08-07 02:07:08

解下列方程:
①x2+4x-3=0(?用适当的方法);
②3x2-6x-4=0(用配方法).

网友回答

解:①x2+4x-3=0,
这里a=1,b=4,c=-3,
∵△=b2-4ac=16-4×1×(-3)=28>0,
∴x==-2±,
∴x1=-2+,x2=-2-;
②3x2-6x-4=0,
变形得:x2-2x=,
配方得:x2-2x+1=,即(x-1)2=,
开方得:x-1=±,
解得:x1=1+,x2=1-.
解析分析:①找出a,b及c的值,计算得到根的判别式的值大于0,代入求根公式即可求出解;
②方程两边除以3变形后,常数项移动右边,两边加上一次项系数一半的平方,开方即可求出解.

点评:此题考查了解一元二次方程-配方法与公式法,利用公式法解方程时,首先将方程整理为一般形式,找出a,b及c的值,当根的判别式的值大于等于0时,代入求根公式即可求出解.
以上问题属网友观点,不代表本站立场,仅供参考!