已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,
求证:BD=2CE.
网友回答
证明:如图,分别延长CE,BA交于一点F.
∵BE⊥EC,
∴∠FEB=∠CEB=90°,
∵BE平分∠ABC,
∴∠FBE=∠CBE,
又∵BE=BE,
∴△BFE≌△BCE?(ASA).
∴FE=CE.
∴CF=2CE.
∵AB=AC,∠BAC=90°,∠ABD+∠ADB=90°,∠ADB=∠EDC,
∴∠ABD+∠EDC=90°.
又∵∠DEC=90°,∠EDC+∠ECD=90°,
∴∠FCA=∠DBC=∠ABD.
∴△ADB≌△AFC.
∴FC=DB,
∴BD=2EC.
解析分析:延长CE,BA交于一点F,由已知条件可证得△BFE全≌△BEC,所以FE=EC,即CF=2CE,再通过证明△ADB≌△FAC可得FC=BD,所以BD=2CE.
点评:本题考查了全等三角形的判断和性质,常用的判断方法为:SAS,SSS,AAS,ASA.常用到的性质是:对应角相等,对应边相等.有时还需要证“两步”全等.在证明中还要注意图形中隐藏条件的挖掘如:本题中的公共边BE.