在△ABC中,角A,B,C的对边分别为a、b、c,已知向量m=(cosA,cosB),n=(a,2c

发布时间:2021-02-26 22:47:19

在△ABC中,角A,B,C的对边分别为a、b、c,已知向量m=(cosA,cosB),n=(a,2c-b),且m//n若a=4,求△ABC面积的最大值

网友回答

向量m=(cosA,cosB),n=(a,2c-b),且m//n
∴acosB-(2c-b)cosA=0
根据正弦定理
sinAcosB-(2sinC-sinB)cosA=0
∴ sinAcosB+cosAsinB=2sinCcosA
∴sin(A+B)=2sinCcosA
∵sin(A+B)=sinC>0∴sinC=2sinCcosA
∴cosA=1/2,
∵0
以上问题属网友观点,不代表本站立场,仅供参考!