如图,在平面直角坐标系中,直线y=分别交x轴、y轴于A、B两点.点C(4,0)、D(8,0),以CD为一边在x轴上方作矩形CDEF,且CF:CD=1:2.设矩形CDE

发布时间:2020-08-08 03:46:23

如图,在平面直角坐标系中,直线y=分别交x轴、y轴于A、B两点.点C(4,0)、D(8,0),以CD为一边在x轴上方作矩形CDEF,且CF:CD=1:2.设矩形CDEF与△ABO重叠部分的面积为S.
(1)求点E、F的坐标;
(2)当b值由小到大变化时,求S与b的函数关系式;
(3)若在直线y=上存在点Q,使∠OQC等于90°,请直接写出b的取值范围.

网友回答

解:(1)∵C(4,0)D(8,0),
∴CD=4,
∵矩形CDEF,且CF:CD=1:2
∴CF=DE=2,
∵E、F在第一象限
∴E(8,2)F(4,2);

(2)由题意知:A(2b,0)B(0,b)在直角三角形ADH中,tan∠BAO=
①当0<b≤2时,如图,S=0
②当2<b≤4时,如图,设AB交CF于G,AC=2b-4
∵在直角三角形中,tan∠BAO=∴CG=b-2
∴S=,即S=b2-4b+4
③当4<b≤6,如图,设AB交EF于点G
AD=2b-8
∵在直角三角形ADH中,tan∠BAO=
∴DH=b-4? EH=6-b
在矩形CDEF中
∵CD∥EF
∴∠EGH=∠BAO
在直角三角形EGH中tan∠EGH=
∴EG=12-2b
∴S=2×4-=-b2+12b-28
④当b>6时,如图,S=8;

(3)设Q(x,-x+b),
∵∠OQC=90°,
∴OQ2+CQ2=OC2,
∴[x2+(-x+b)2]+[(x-4)2+(-x+b)2]=16,
∵存在Q,
∴△≥0,
求得:b≤+1,
由已知可得:0<b≤.
解析分析:(1)两点的坐标,根据矩形的性质求出E、F的坐标.
(2)要求面积,有几种情况:①0<b≤2? ②2<b≤4? ③4<b≤6? ④b>6
根据直角三角形的直角关系以及面积公式求解.
(3)找到极点位置就可.

点评:①注意有多种情况,不能少一种.②注意极点位置的确定,也就是定义域.
以上问题属网友观点,不代表本站立场,仅供参考!