探索:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1;
(x-1)(x3+x2+x+1)=x4-1;
(x-1)(x4+x3+x2+x+1)=x5-1;
? …
①试求26+25+24+23+22+2+1的值;
②判断22012+22011+22010+22009+…+22+2+1的值的个位数是几?
网友回答
解:①26+25+24+23+22+2+1
=(2-1)(26+25+24+23+22+2+1)
=26-1
=64-1
=63.
②22012+22011+22010+22009+…+22+2+1
=(2-1)(22012+22011+22010+22009+…+22+2+1)
=22013-1,
2013÷4=503…1,
即22013的个位数字是2,2-1=1,
即22012+22011+22010+22009+…+22+2+1的值的个位数是1.
解析分析:①乘以2-1,即可根据已知式子求出结果是26-1,求出即可.
②求出式子=22013-1,根据21,22,23,24,25的结果的个位数字的规律,即可求出