几何证明(1)已知:如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG,延长AF、AG,与直线BC相交.求证:F

发布时间:2020-08-08 09:45:25

几何证明
(1)已知:如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG,延长AF、AG,与直线BC相交.求证:FG=(AB+BC+AC).
(2)若BD、CE分别是△ABC的内角平分线,其余条件不变(如图1),线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.

网友回答

解:(1)如图1,∵AF⊥BD,∠ABF=∠MBF,
∴∠BAF=∠BMF,
在△ABF和△MBF中,
∵,
∴△ABF≌△MBF(ASA)
∴MB=AB
∴AF=MF,
同理:CN=AC,AG=NG,
∴FG是△AMN的中位线
∴FG=MN,
=(MB+BC+CN),
=(AB+BC+AC).

(2)图2中,FG=(AB+AC-BC)
理由如下:如图2,
延长AG、AF,与直线BC相交于M、N,
∵由(1)中证明过程类似证△ABF≌△NBF,
∴NB=AB,AF=NF,
同理CM=AC,AG=MG
∴FG=MN,
∴MN=2FG,
∴BC=BN+CM-MN=AB+AC-2FG,
∴FG=(AB+AC-BC),
答:线段FG与△ABC三边的数量关系是FG=(AB+AC-BC).
解析分析:(1)利用全等三角形的判定定理ASA证得△ABF≌△MBF,然后由全等三角形的对应边相等进一步推出MB=AB,AF=MF,同理CN=AC,AG=NG,由此可以证明FG为△AMN的中位线,然后利用中位线定理求得FG=(AB+BC+AC);
(2)延长AF、AG,与直线BC相交于M、N,与(1)类似可以证出
以上问题属网友观点,不代表本站立场,仅供参考!