如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,点D、E在x轴上,CF交y轴于点B(0,2),且其面积为8:(1)此抛物线的解析式;(2)

发布时间:2020-08-08 09:45:20

如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,点D、E在x轴上,CF交y轴于点B(0,2),且其面积为8:
(1)此抛物线的解析式;
(2)如图2,若点P为所求抛物线上的一动点,试判断以点P为圆心,PB为半径的圆与x轴的位置关系,并说明理由.
(3)如图2,设点P在抛物线上且与点A不重合,直线PB与抛物线的另一个交点为Q,过点P、Q分别作x轴的垂线,垂足分别为N、M,连接PO、QO.求证:△QMO∽△PNO.

网友回答

解:(1)∵点B(0,2),
∴OB=2,
又∵CF?OB=8,
∴CF=4,
由题意可知,点C(-2,2),点F(2,2),
设抛物线的解析式为y=ax2+bx+c,
则,
∴抛物线的解析式为y=x2+1;

(2)设P点的坐标为(x0,x02+1),
则PB==x02+1,
又点P到x轴的距离为x02+1,
∴以点P为圆心、PB为半径的圆与x轴相切;


(3)由(2)可知,PB=PN,QB=QM,
∵PN、QM垂直x轴,
∴QM∥BO∥PN,
∴=,
∴=,
∵∠QMO=∠PNO=90°,
∴△QMO∽△PNO.
解析分析:(1)先根据点B(0,2),CF?OB=8,可知CF=4,由矩形的性质可得出C、F点的坐标,再用待定系数法即可求出抛物线的解析式;
(2)设P点的坐标为(x0,x02+1),利用两点间的距离公式可得出PB的长,再根据P到x轴的距离为x02+1即可得出结论;
(3)由(2)可知,PB=PN,QB=QM,再根据PN、QM垂直x轴可得出QM∥BO∥PN,由平行线分线段成比例定理及∠QMO=∠PNO=90°即可得出△QMO∽△PNO.

点评:本题考查的是二次函数综合题,涉及到待定系数法求二次函数的解析式、两点间的距离公式、切线的性质、平行线的判定与性质、相似三角形的判定,涉及面较广,难度较大.
以上问题属网友观点,不代表本站立场,仅供参考!